

CORAL
YOUR PERSONAL MUSIC STREAMING SERVICE

JOHN PATRICK GLATTETRE
DE MONTFORT UNIVERSITY

Leicester, United Kingdom

JANUARY 13, 2023

P2622188 John Patrick Glattetre 2022-12-06

Page 1 of 23

Table of Contents

Table of Contents... 1

Acknowledgements ... 2

Literature Review .. 3

Introduction ... 3

Comparing self-hosted players with their commercial alternatives .. 3

Picking an audio codec .. 4

Picking the right AAC encoder frontend for a given platform ... 5

Audio Playback on the Web... 5

Application Architecture Choices ... 6

Design Patterns ... 6

Conclusion ... 7

System Design ... 8

Backend Architecture .. 8

Frontend Architecture ... 11

Functional requirements.. 13

Test strategy .. 15

Example of a backend test – content indexer .. 15

Test case table ... 16

User Interface .. 18

Implementation Report ... 19

Bibliography .. 21

Acknowledgements

I would like to give a special thank you to my supervisor Dr. David

Smallwood for allowing me to work on a project I’ve always wanted to

create but never had the time to devote to. I am grateful to my father

for providing incredible technical guidance, insightful conversations

about software architecture and overall helping me become a better

engineer.

I want to thank my partner, Ana, for her continuous support throughout

the development process, whether it be through the surprise snacks

and drinks or being the best rubber ducky ever. I would also like extend

my gratitude to my friends in the comfy Discord server, for inspiring me

and constantly giving me something to think about.

Finally, my cat Mochi for being a never-ending source of dopamine.

Literature Review

Introduction
As a DJ and artist, I maintain a significant collection of lossless encoded music on my personal server. I

purchase music from independent record labels and receive music from other artists. This means that

most of the music I listen to is stored locally on my devices. One potential solution to make this

extensive collection accessible across multiple devices is to utilize file syncing software to mirror files

across various devices. However, this approach might not be feasible for devices with less storage. On

those devices one can employ audio transcoding to a format which occupies less space. Transcoding files

can be cumbersome as it necessitates managing two separate collections of music if the original copies

are to be retained. Furthermore, if one forgets to convert and sync an album before traveling to an area

with limited internet access, it may not be available for playback. Coral aims to solve these challenges by

providing a web application to access remote music collections on even the slowest connections using

modern audio compression and content delivery techniques.

Comparing self-hosted players with their commercial alternatives
Self-hosting is the practice of managing applications running on infrastructure you control rather than

using relying on products created by large companies. An example of this would be listening to music

through Coral as opposed to subscribing to Spotify or another streaming service. The popular self-

hosted streaming platforms Plex1 and Jellyfin2 allow users to stream movies, TV shows and music from

their own collection. They provide a more traditional music player experience, where you pick what you

want to listen to. Commercial streaming platforms enhance the listening experience by using machine

learning models to provide recommendations for what to listen to next and creating dynamic playlists

based around a theme (Pastukhov, 2022).

Figure 1 - Spotify recommending playlist additions

1 https://plex.tv/
2 https://jellyfin.org/

P2622188 John Patrick Glattetre 2022-12-06

Page 4 of 23

Spotify provides an API which allows developers to query their library for musical analysis metadata such

as key and speed in beats per minute as well as other metrics that describe the musical properties of a

song (Spotify, 2023). Their API can be leveraged to create an experience like that of a commercial

streaming platform with song recommendations based on what’s being played and what the user likes

(Spotify, 2023), which can contribute a better user experience than self-hosted music streaming

platforms such as Navidrome3. However, there are cases where a user owns music that is unavailable on

Spotify, which means that those songs would be out of reach for the recommendation system. It is

possible to mitigate this problem by utilizing libraries used by the open-source DJ software Mixxx. The

software employs the library KeyFinder among other tools to perform a similar musical analysis to that

of Spotify to assist DJs in finding harmonically compatible music (Holthuis, 2021).

Picking an audio codec
There are two fundamentally different methods of compressing audio, lossy and lossless. Lossless

compressors encode audio in such a way that the original file can be reconstructed fully, whereas lossy

encoders rely on psychoacoustics to locate portions of audio that are imperceptible to the human ear,

which are then discarded to preserve storage space (Brandenburg, 2000, p. 2). Lossy encoders can

therefore produce smaller files and are better suited for streaming over the internet. A set of testing

methodologies were made to measure the accuracy of the numerous audio codecs available to

consumers in the mid-to-late 1990s by the ITU Radiocommunication Sector (ITU-R), an organization

responsible for managing the global use of the radio-frequency spectrum and satellite orbits (ITU, 2022).

Recommendation ITU-R BS.1116-1 describes this testing framework. The framework dictates a set of

criteria’s to be met by the subjects participating in the test and how the listening test, known as the

“double-blind triple-stimulus with hidden reference” test, should be performed (ITU-R, 1994-1997, pp.

3-4).

Scientists at the Communications Research Center in Canada used this framework to test the differences

between six codec families at different bitrates. In this study, the Advanced Audio Codec (AAC) encoder

created by the Fraunhofer Institute for Integrated Circuits performed the best out of all the codec

families at a bitrate of 128kbps (Soulondre, et al., 1998). More recently, audio enthusiasts on the

internet forum HydrogenAudio have also been using this framework to perform listening tests of

modern audio codecs. In a study run by forum user “Kamedo2”, 38 participants rated different audio

codecs and found that Opus slightly edged out over AAC at a bitrate of 96kbps, ahead of Ogg Vorbis and

MP3 (Kamedo2, 2014). For reference, the music streaming service Spotify uses 256kbps AAC for their

premium tier subscriptions (Spotify Inc., 2022).

3 https://navidrome.org/

P2622188 John Patrick Glattetre 2022-12-06

Page 5 of 23

Based on this information, one could think to use Opus as a primary audio codec for a project like Coral.

Opus encoded audio can be packaged into various container formats such as WebM, Ogg and MPEG-4.

This can be confusing to work with as browsers may support one container configuration but not

another, making Opus an inconvenient choice from a content delivery perspective (CanIUse, 2023).

Safari users reported in 2022 that Opus in a WebM container wasn’t supported, a combination known to

be supported by other browsers (Gullen, 2022). This makes AAC, the second-best performer a better

choice as it is natively supported on more platforms.

Picking the right AAC encoder frontend for a given platform
Picking the right AAC encoder frontend for a given platform is a complex task. Not only does the encoder

need to run on the platform, but it must also output the AAC stream in the right format (Pantos & May,

2017, p. 8). On Windows, Apple’s AAC encoder can be used via qaac, a utility made to interface with

Apple’s CoreAudio library used by iTunes and QuickTime (nu774, 2022). MacOS has a built-in AAC

encoder that is exposed via application afconvert; however, it cannot write the stream to memory and

must commit the file to disk, which makes it impossible to use efficiently in a streaming application. The

multi-platform audio and video processing tool FFmpeg has among many other things, its own AAC

encoder that functions on Windows, MacOS and Linux. However, as previously seen in listening tests

and in recommendations from audio enthusiasts on the forum HydrogenAudio, its performance leaves

much to be desired and it is preferred to use other encoders where possible (HydrogenAudio, 2017). As

FFmpeg supports Apple’s encoder on MacOS via their AudioToolbox API, it is possible to use their

encoder as opposed to the built-in variant (FFmpeg Developers, 2022). As previously established,

Apple’s encoder is not easily usable on Linux, therefore the Fraunhofer’s encoder is recommended,

which is available via the fdkaac command-line utility (nu774, 2022) or the libfdk_aac library with

FFmpeg (FFmpeg Bug Tracker and Wiki, 2022). It is worth mentioning that FFmpeg must be compiled

with support for the Fraunhofer AAC encoder by the user themselves as the respective software licenses

of FFmpeg and the encoder are incompatible with one another regarding distribution (Free Software

Foundation, 2022).

Audio Playback on the Web
HTTP Live Streaming, also known as HLS, was developed by Apple Inc. in 2009. HLS is an efficient and

cost-effective protocol to stream audio and video content over the internet. By allowing the receiver to

adapt the media's bitrate to the current network conditions, it ensures a seamless playback experience

with the best possible quality (Pantos & May, 2017). HLS only supports a few audio codecs for stereo

audio, primarily different variations of AAC (Advanced Audio Coding) and FLAC (Free Lossless Audio

Codec) (Apple Inc., 2022). Many browsers can playback other types of audio files using the <audio>

HTML tag, but there are no built-in fallback mechanisms to swap out files should the users’ connection

speed be too slow (Mozilla Developer Network, 2022). Media Source Extensions (MSE) is a standard

written by the World Wide Web Consortium, edited by employees from companies in the content

delivery space such as Google and Netflix, to allow external players to use JavaScript to pre-process

unsupported media streams for them to be consumable by the browser (W3C, 2022). As HLS can

provide the fallback mechanisms needed for a smooth streaming experience on a variable connection,

MSE can be used to allow the browser to playback HLS playlists.

P2622188 John Patrick Glattetre 2022-12-06

Page 6 of 23

Application Architecture Choices
Microsoft recommends that developers architect their web applications using the Clean Architecture

pattern in order to achieve dependency inversion (Smith, 2022). This architectural pattern was initially

created by Jeffery Palermo in 2008, as “The Onion Architecture”. Palermo places emphasis on

separation of concerns throughout the whole system to maintain simple extensibility and testability

(Palermo, 2008).

Due to the complexity around figuring out what audio encoders to target on what platforms, an

abstraction layer should be made to create a unified API for accessing encoders in a frontend and

platform agnostic way.

Design Patterns
Software design patterns are ubiquitous as they are not restricted to certain programming languages

and used as starting points which are then expanded upon by the developer (Shvets, 2022). Coral makes

extensive use of design patterns, including the Factory, Builder and Façade patterns, to ensure the

codebase is highly maintainable. The factory pattern is used where an application needs to interface

with systems that fundamentally do the same thing, but their implementations differ.

The pattern works by creating a common interface that all the individual components implement such

that the underlying implementation of the component is abstracted away from the system. The factory

provides a mechanism for classes to request an object matching a criterion, which the factory then

creates. In Coral, the factory is also aware of what platform the encoder runs on and what platform it is

running on, thereby being able to return the correct encoder implementation for a given platform.

Figure 2 – Common interface example, used in the Factory pattern (Zhart, 2022)

P2622188 John Patrick Glattetre 2022-12-06

Page 7 of 23

The second pattern, Builder, is used to simplify the configuration of complex objects. The encoder

frontends that Coral interfaces with are all command line tools which take in arguments in a specific

order. The Builder pattern can be implemented by setting up classes that implement setter functions for

each of their properties, which then return themselves such that the setter methods can be chained

together. Finally, the builder provides a method that builds the object, in Coral’s case, an array with

command-line arguments in a specific order.

As design patterns were originally coined in the architecture design world, terms that represent similar

things in both worlds commonly use the same name. The façade pattern is one of them. The pattern is

used to simplify complex systems into a single usable class. This way the encoder factory and

configuration are abstracted away from the main program and the class consuming the façade can call a

single function that takes care of the encoding process in a platform agnostic way.

Conclusion
By utilizing musical analysis data within Coral, users can be in control of their music library while also

enjoying the experience of a commercial streaming platform. Using the test framework created by ITU,

it was established that the lossy stereo codecs Opus and AAC performed better than their competition,

achieving source transparency at a low bitrate. However, AAC was chosen as the primary audio codec to

be used by Coral for its superior browser and system compatibility. AAC can be delivered via Apple’s

streaming protocol HLS, which can adapt to slower connections by automatically changing the quality of

the content being streamed. Coral uses a set of different AAC encoders, dependent of the platform it is

running on and uses the Factory pattern to utilize the appropriate one at runtime.

Figure 3 - Example of a class applying the builder pattern (Zhart, 2022)

P2622188 John Patrick Glattetre 2022-12-06

Page 8 of 23

System Design

Backend Architecture
Coral’s overall project structure is architected following the Clean Architecture pattern. Each application

component has been split into a C# project, ensuring high testability. This architecture pattern pushes

developers to think about how the components should interact with one another to achieve low

coupling.

The Model–View–Viewmodel (MVVM) pattern is used to have more control over the data flowing

through the application. It is possible to create smaller models that contain just the information that is

relevant to the operation being performed called Data Transfer Objects (DTO) or view models. This

means that we have control over what data we send to the client by explicitly creating the DTO models

as well as the data we serialize back from the user. An example of this is handling user information.

Using automatic object mappers such as AutoMapper, it is possible to ensure that outgoing API requests

should omit sensitive fields such as the user’s password hash. It is also possible to enforce rules on

incoming requests from the user. An example of this would be preventing a user from modifying server-

managed timestamps.

Figure 4 - Backend codebase structure

P2622188 John Patrick Glattetre 2022-12-06

Page 9 of 23

To utilize a class originating from another C# project, a project reference must be made. This creates

dependency chain that is easy to visualize. In this diagram, the purple lines indicate a single project

reference between the two nodes. The API project, a REST API powered by ASP.NET Core, serves as the

primary point of entry for users. The Services project contains all the business logic used in the

application, such as the content indexer, audio transcoder and content library. The audio transcoder

relies on the encoder factory which is configured by classes in the Encoders project. The Services project

also returns DTOs for every public method used by the API. The DTO project depends on the database

models, as it needs to know what data sources it can map data from. Finally, the database is configured

via the Configuration project.

Figure 5 - Backend dependency chain

P2622188 John Patrick Glattetre 2022-12-06

Page 10 of 23

Coral’s main backend components include a content indexer, content packaging system that creates HLS

playlists for the browser and an audio transcoder. The content indexer is responsible for storing the

metadata of all the music present in a user’s library in an SQLite database. This is done to ensure highly

performant collection queries and fast application startup times. The database is managed via

Microsoft’s database ORM, Entity Framework Core. The core component of the content indexer is a

third-party library that parses audio files of different formats called “Audio Tools Library for .NET”

(Zeugma440, 2022). The content indexer is aware of file system changes and can read both new and

existing files as soon as they are changed. The database schema contains the minimum amount of

information needed to organize and display a simple music collection, which can be expanded via

database migrations in the future.

Figure 6 - Database ER Diagram

P2622188 John Patrick Glattetre 2022-12-06

Page 11 of 23

The content packaging system uses the media processing application FFmpeg to generate HLS playlists

while the audio file is being transcoded, to deliver a real-time listening experience to the end user. The

stream is now playable within a second instead of waiting for an entire audio file to finish converting -

which depending on processing performance of the system Coral is running on, can take some time.

This is achieved by running the playlist generator and audio transcoder simultaneously. The playlist

generator streams data from the audio transcoder and writes an HLS playlist using the playlist type

EVENT. The playlist type allows the packaging system to create a playlist that is playable by the browser

as soon as the first segment is made. Then, once the processing and transcoding process is complete,

the final duration of the transcoded file is announced to the player and the whole file can be played

from start to finish.

Frontend Architecture
The frontend is written in TypeScript with Next.js, which is built on React. It uses Zustand for state

management and Axios as its HTTP client. In order to save development time, the backend is configured

to generate an OpenAPI specification which the frontend can use to generate its API client with. This

means that any backend changes are automatically implemented in the frontend, however any

abstractions created over the generated API client must updated when existing functionality changes.

Figure 7 - API routes displayed via Swagger UI

P2622188 John Patrick Glattetre 2022-12-06

Page 12 of 23

Individual React components are assembled to make up web pages. In this example, the Album page

combines an album information, playlist, and media player component to make up the album page,

which can be seen in Figure 17.

Figure 8 - Album page code

P2622188 John Patrick Glattetre 2022-12-06

Page 13 of 23

Functional requirements
Coral’s web interface will be the primary method of user interaction. As such, the user interface must be

able to control every aspect of the application, from configuring the indexer and transcoding system to

managing a music library. A common feature in many music players and streaming platforms is the

ability to browse a library via audio metadata present on tracks in the library.

Figure 9 - iPod user interface showing common library items (Strietelmeier, 2007)

Coral will only be used by the user that has configured the system. This is because UK law mandates that

digital copies of copyrighted media shall be consumed by none other than its owner (Copyright, Designs

and Patents Act 1988 - Part I, c. III, Section 28B). However, even though the system may only have a

single user, the system still requires an authentication mechanism as it will be exposed to the internet.

With these things in mind, it is possible to sketch out a use case sheet. In order to rank the importance

of each requirement, they have been structured following the MosCoW (must have, should have, could

have, won’t have) methodology.

Must have

▪ Create an account

▪ Configure the content indexer, pointing it to their music library on disk

▪ Browse their library via albums, artists and tracks

▪ Playback tracks

o In their original format

o Transcoded to AAC by Coral

▪ Create playlists

▪ Control the player using media keys on their keyboard or system-wide media controller

▪ Search for their music

Should have

▪ Update their collection on the fly and be able to play new music in Coral once scanned

▪ Monitor scanner status and request re-scans on demand

▪ Playback logging to Last.fm, a service that let users log what they listen to across multiple

platforms

P2622188 John Patrick Glattetre 2022-12-06

Page 14 of 23

▪ Listen to dynamically created playlists

o Unheard music

o Genre mixes

o Artist mixes

Could have

- Use data from Spotify to supplement the library metadata (picture of artist, biography, album

artwork if it doesn’t already exist, etc.)

- Use data from Spotify to create recommendations for music indexed by Coral

- A notification system to let the user know of system events (new library additions, recent

failures, failed login attempts)

- Quick access to music through a simple menu that can be triggered by a keyboard shortcut

(think: Spotlight on MacOS)

- Modify the metadata of music in their collection

- A listening test to determine which AAC bitrate sounds the best to the user

- Support for other lossy codecs

Won’t have

- A mobile-compatible version of the website

- Integration with the KeyFinder library used by Mixxx to provide a harmonic recommendation for

music unavailable to Spotify

P2622188 John Patrick Glattetre 2022-12-06

Page 15 of 23

Test strategy
I’m developing Coral’s backend following the test-driven development (TDD) method along with the

Arrange-Act-Assert test pattern, following Microsoft’s recommended testing practices4. The unit tests

are written before the functionality is implemented, ensuring that you write code that behaves like you

would expect rather than a potentially incorrect implementation. Another benefit to TDD is high code

coverage due to the nature of writing tests first. High code coverage and using continuous integration

services such as GitHub Actions to validate your latest changes can help reduce the chance of

regressions before the code is deployed and allows you to deploy changes with confidence. However,

the TDD approach starts to fall apart once you are attempting to prototype a system without a clear

specification. It is hard to write tests for a system you’re not sure how works yet - which Is why I have

initially decided not to write automated tests for the frontend as it is changing rapidly. It is not worth

investing the additional development time writing a test suite for a system that can change at any

minute.

Example of a backend test – content indexer
There are many ways to organize a music collection. Collections can be sorted via albums, artists,

genres, release date and so on. Some also choose to dump their music into a single folder and call it a

day. This means that Coral will need to accommodate for different types of music collections, both

pristinely organized and tagged as well as files without any metadata stored in the same folder as many

other unrelated tracks. To accommodate these scenarios in my test data, I have created a test library

without any musical content to be used while testing the content indexer.

Figure 10 – A sample of the test music library

Coral uses the libraries xUnit for unit-testing along with NSubstitute for mocking services. I have also

implemented an in-memory database that exists with the lifetime of the test, in order to validate

indexing behavior using EF Core via SQLite. See Figure 11 for a content indexer test.

4 https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices

P2622188 John Patrick Glattetre 2022-12-06

Page 16 of 23

Figure 11 - Example of an indexer test

Test case table
ID Part of

System
User Action Expected Result Success

001 Album
page

Navigates to an album Sees album name, artist name, number of
tracks. Release date and genre are also
available if supplied by the user. Album
tracks are listed below the metadata
header and can be interacted with.

Yes

002 Album
page

Clicks on artist name in
header

Gets redirected to artist page No

003 Album
playlist

Double clicks on song in
album playlist

Coral plays song and announces media
playback to the browser

Yes

004 Album
playlist

Plays song Song is highlighted in the playlist, to show
that it is being played, artwork is displayed
by the player

Yes

005 Album
playlist

Song is hovered over with a
mouse

Track number is replaced with a play button Yes

006 Album
playlist

Attempts to play an
unavailable song

Song is grayed out and upon hover, a
popup is shown showing why the song is
unplayable

No

007 Player Clicks next song Next song in the queue is played Yes

008 Player Clicks pause Pauses song Yes

009 Player Clicks previous Goes to the previous song in the queue Yes

P2622188 John Patrick Glattetre 2022-12-06

Page 17 of 23

010 Player Interacts with player via
the MediaSession API (in-
browser controls or
system-wide media
controls)

Commands are sent to main player and
actions are executed.

Yes

011 Player Clicks on a point in the seek
bar

Player seeks to that point in the song Yes

012 Scanner Adds new music to their
collection and reboots
Coral

Scanner picks up the change and adds the
content to their library

Yes

013 Player Requests a transcode of a
song on MacOS

The song is encoded with FFMpeg using the
AudioToolbox-based AAC encoder

Yes

014 Player Requests a transcode of a
song on Windows

The song is encoded by qaac Yes

015 Player Requests a transcode of a
song on Linux

The song is encoded by fdkaac No

016 Player Requests the file with no
encoding performed

The song is read from disk and delivered as-
is

Yes

017 Indexer Points the indexer to their
music library

The indexer reads the library and writes
track metadata to a database

Yes

018 Indexer Indexes album with a single
new artist

A new artist and album are created, and
they are referenced to each other

Yes

019 Indexer Indexes album with no
metadata

The indexer uses its parent folder’s name as
the album title

Yes

020 Indexer Indexes an album with two
artists, one that exists from
before and one new

The album is created along with any new
artists that exist on it. The existing artist is
also found and linked with the same album

Yes

021 Indexer Indexes an album with the
same name as one that
already exists

The album is created and has no reference
to the existing one.

Yes

022 Indexer Performs an unexpected
action that leads to an
error

Indexer broadcasts status and continues
scanning other items

No

023 Login
page

Submits incorrect
credentials

User is not granted access and an error
message is shown

No

024 Login
page

Submits correct credentials User is granted access and the home page
is shown

No

P2622188 John Patrick Glattetre 2022-12-06

Page 18 of 23

User Interface
My goal with designing Coral’s user interface is that it should feel familiar from the moment you use it.

The frontend is built using the React component library Mantine, which provides pre-styled buttons,

forms, dropdowns and other components needed to build a web application. However, the site layout

will be written without any frameworks in plain CSS. Over the years, a set of patterns have emerged to

set the standard for what a music player on the web should look like. In order to understand what I

needed to implement design-wise, I used a couple media players and observed their behaviors and

stylistic approaches before landing on what I chose for Coral.

Figure 12 - iTunes media controls

Figure 13 - Spotify media controls

Figure 14 - Amazon Music media controls

There are various approaches one can take to a create a media player with regards to how the controller

elements should be placed. Spotify’s approach clearly shows the seek bar and the playlist control

buttons while also showing the metadata clearly. I preferred their approach over Amazon and Apple’s as

they didn’t show the player’s current position, nor made the seeker easily accessible. The player is still in

its prototype phase and is lacking a volume slider and playlist management controls.

Figure 15 - Coral's media controls as of November 2022

P2622188 John Patrick Glattetre 2022-12-06

Page 19 of 23

Implementation Report
I have been keeping track of my progress and findings in my Notion notebook and I’ve used the Issue

page in my GitHub repository to monitor what features I would like to have in Coral. I created user

stories for each feature in my application and prioritized them by creating monthly milestones. For the

entirety of November I focused on implementing the core functionality of the application such as the

indexer, transcoder and player for the frontend and completed 76% (13 out of 17) of the tasks I set out

to do. However, it is worth mentioning that the tasks remaining were deemed less urgent - and longer,

complex tasks were prioritized instead. I also had the flu towards the end of the month, which knocked

me out for a week.

Figure 16 - Completed tasks in November

P2622188 John Patrick Glattetre 2022-12-06

Page 20 of 23

So far, Coral can index music collections specified by the user via an environment variable, transcode

audio to AAC on MacOS and Windows using FFMpeg and qaac, and playback albums in a web browser.

There is an album page that can display the current album name and artwork, artist, duration and genre

if present, with a playlist and music player. The player can be used to skip or seek through tracks as well

as show the currently playing song and its duration and artwork.

Figure 17 - UI as of December 2022

P2622188 John Patrick Glattetre 2022-12-06

Page 21 of 23

Bibliography
Apple Inc., 2022. Apple Developer Documentation - HTTP Live Streaming (HLS) Authoring Specification

for Apple Devices. [Online]

Available at:

https://developer.apple.com/documentation/http_live_streaming/http_live_streaming_hls_authoring_

specification_for_apple_devices

[Accessed 08 12 2022].

Brandenburg, K., 2000. MP3 and AAC Explained. [Online]

Available at: https://graphics.ethz.ch/teaching/mmcom12/slides/mp3_and_aac_brandenburg.pdf via

https://web.archive.org/web/20170213191747/https://graphics.ethz.ch/teaching/mmcom12/slides/mp

3_and_aac_brandenburg.pdf

[Accessed 13 December 2022].

CanIUse, 2023. Opus audio format | Can I use... Support tables for HTML5, CSS3, etc. [Online]

Available at: https://caniuse.com/opus

[Accessed 10 January 2023].

Copyright, Designs and Patents Act 1988 - Part I, c. III, Section 28B, 2014. Copyright, Designs and Patents

Act 1988. [Online]

Available at: https://www.legislation.gov.uk/ukpga/1988/48/section/28B

FFmpeg Bug Tracker and Wiki, 2022. Encode/AAC. [Online]

Available at: https://trac.ffmpeg.org/wiki/Encode/AAC#fdk_aac

[Accessed 19 December 2022].

FFmpeg Developers, 2022. GitHub. [Online]

Available at: https://github.com/FFmpeg/FFmpeg/blob/master/libavcodec/audiotoolboxenc.c#L231

[Accessed 15 December 2022].

Free Software Foundation, 2022. Various Licenses and Comments about Them - GNU Project - Free

Software Foundation. [Online]

Available at: https://www.gnu.org/licenses/license-list.html#fdk

[Accessed 15 December 2022].

Gullen, A., 2022. WebKit Bugzilla. [Online]

[Accessed 10 January 2023].

Holthuis, J., 2021. Mixxx. [Online]

Available at: https://mixxx.org/news/2021-04-08-new-in-2-3-keyfinder/

[Accessed 11 January 2023].

HydrogenAudio, 2017. AAC Encoders. [Online]

Available at: https://wiki.hydrogenaud.io/index.php?title=AAC_encoders

[Accessed 14 December 2022].

P2622188 John Patrick Glattetre 2022-12-06

Page 22 of 23

IgorC, 2011. Results of the public AAC listening test @ 96 kbps (July 2011). [Online]

Available at: https://listening-tests.hydrogenaud.io/igorc/aac-96-a/results.html

[Accessed 14 December 2022].

ITU, 2022. Welcome to ITU-R. [Online]

Available at: https://www.itu.int/en/ITU-R/information/Pages/default.aspx

[Accessed 13 December 2022].

ITU-R, 1994-1997. Rec. ITU-R BS.1116-1 - METHODS FOR THE SUBJECTIVE ASSESSMENT OF SMALL

IMPAIRMENTS. [Online]

Available at: https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1116-1-199710-S!!PDF-E.pdf

[Accessed 13 December 2022].

Kamedo2, 2014. Results of the public multiformat listening test (July 2014). [Online]

Available at: http://listening-test.coresv.net/results.htm

[Accessed 8 12 2022].

Mozilla Developer Network, 2022. <audio>: The Embed Audio element. [Online]

Available at: https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio

[Accessed 8 12 2022].

nu774, 2022. nu774/fdkaac: command line encoder frontend for libfdk-aac. [Online]

Available at: https://github.com/nu774/fdkaac

[Accessed 19 December 2022].

nu774, 2022. nu774/qaac: CLI QuickTime AAC/ALAC encoder. [Online]

Available at: https://github.com/nu774/qaac

[Accessed 15 December 2022].

Palermo, J., 2008. Programming with Palermo. [Online]

Available at: https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

[Accessed 16 December 2022].

Pantos, R. & May, W., 2017. RFC 8216: HTTP Live Streaming. [Online]

Available at: https://www.rfc-editor.org/rfc/rfc8216

Pastukhov, D., 2022. Music Tomorrow. [Online]

Available at: https://www.music-tomorrow.com/blog/how-spotify-recommendation-system-works-a-

complete-guide-2022

[Accessed 10 January 2023].

Reese, J., 2022. Best practices for writing unit tests - .NET | Microsoft Learn. [Online]

Available at: https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices

Shvets, A., 2022. refactoring.guru. [Online]

Available at: https://refactoring.guru/design-patterns/what-is-pattern

[Accessed 15 December 2022].

Smith, S., 2022. GitHub. [Online]

Available at: https://github.com/dotnet-architecture/eBooks/tree/main/current/architecting-modern-

P2622188 John Patrick Glattetre 2022-12-06

Page 23 of 23

web-apps-azure

[Accessed 16 December 2022].

Soulondre, G. A., Grusec, T., Lavoie, M. & Thibault, L., 1998. Subjective Evaluation of State-of-the-Art 2-

Channel Audio Codecs. Amsterdam: Audio Engineering Society.

Spotify Inc., 2022. Audio Quality. [Online]

Available at: https://support.spotify.com/us/article/audio-quality/

[Accessed 8 12 2022].

Spotify, 2023. Spotify for Developers. [Online]

Available at: https://developer.spotify.com/documentation/web-api/reference/#/operations/get-

recommendations

[Accessed 10 January 2023].

Spotify, 2023. Spotify for Developers. [Online]

Available at: https://developer.spotify.com/documentation/web-api/reference/#/operations/get-audio-

analysis

[Accessed 10 January 2023].

Strietelmeier, J., 2007. Apple iPod classic. [Online]

Available at: https://the-gadgeteer.com/assets/apple-ipod-classic-7.jpg

W3C, 2022. Media Source Extensions. [Online]

Available at: https://www.w3.org/TR/2022/WD-media-source-2-20220921/

[Accessed 8 December 2022].

Zeugma440, 2022. 'Zeugma440/atldotnet: Fully managed, portable and easy-to-use C# library to read

and edit audio data and metadata (tags) from various audio formats, playlists and CUE sheets'. [Online]

Available at: https://github.com/Zeugma440/atldotnet

Zhart, D., 2022. Refactoring Guru. [Online]

Available at: https://refactoring.guru/design-patterns/builder

[Accessed 16 December 2022].

